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ABSTRACT 

In this paper, we study the behaviour of the Poincar6 series of a geometri- 

cally finite group F of isometries of a riemannian manifold X with pinched 

curvature, in the case when F contains parabolic elements. We give a suf- 

ficient condition on the parabolic subgroups of F in order that F be of 
divergent type. When F is of divergent type, we show that the Sullivan 

measure on the unit tangent bundle of X/F is finite if and only if cer- 

tain series which involve only parabolic elements of F are convergent. We 

build also examples of manifolds X on which geometrically finite groups 

of convergent type act. 
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Pans la suite, u n e  vari~t@ de  H a d a m a r d  pinc@e sera une vari@t@ Rieman- 

nienne simplement connexe, complete et ~ courbure pinc~e entre deux constantes 

strictement n@gatives - b  2 et - a  2. 

Soit X une telle vari@t@, on peut compactifier X par son b o r d  v isuel  que 

l'on notera OX. Un groupe F d'isom@tries de X est d i sc re t  s'il agit proprement 

discontinfiment et librement sur X; l'action de F sur X se prolonge en une action 

par hom@omorphismes sur X t2 cOX. Un @l@ment de F - {Id} est h y p e r b o l i q u e  

ou p a r a b o l i q u e  selon qu'il fixe deux points de cOX ou un seul. Le groupe discret 

F laisse invariant l'ensemble limite A r c  cOX, d@fini comme ]'ensemble des points 

d'accumulation dans X U cOX d'une orbite Fx oh x E X. L'ensemble Ar contient 

un, deux ou une infinit@ de points: dans le premier cas, F est p a r a b o l i q u e  

(tous ses ~l@ments autres que Id sont paraboliques), dans le deuxi~me cas, F 

est engendr@ par une isom@trie hyperbolique et dans le dernier cas, F est dit 

non-@l@mentaire. 

Soient x et y deux points de X et s un r@el positif. On d@finit la s@rie de 

Poincar@ associ@e ~ F par 

Pr(x, y, s) = ~ e -sd(x'Ty) 
7EF 

off d est la distance Riemannienne sur X. Le comportement de cette s~rie est 

ind@pendant des points x et y e t  on note 5r son exposant critique, i.e. la borne 

inf@rieure des s tels que Pr(x, y, s) est fini. On dit que F est c o n v e r g e n t  (resp. 

d i v e r g e n t )  si Pr(x, y, 5r) converge (resp. diverge). 

Pans cet article, nous nous int@ressons g la question de la convergence ou 

de la divergence d 'un groupe F g@om@triquement fini, c'est-s qui laisse 

invariant une sous-vari@t@ convexe C(Ar) C X de codimension 0, et telle que 

le quotient C(Ar)/F soit de volume fini. Lorsque C(Ar)/F est compact (ce qui 

@quivaut h dire que F ne contient pas de transformation parabolique), on sait 

que F est divergent et que son exposant critique est strictement positif d~s que 

F n'est pas cyclique [Co]; plus g@n@ralement, ce rdsultat reste vrai si X est un 

espace hyperbolique au sens de Gromov. 

Lorsque F contient des @l@ments paraboliques, les seuls r~sultats connus jusqu'h 

pr@sent sur la divergence concernent les groupes agissant sur un espace sym@trique 

de rang 1 ([S], [CI]) et certains produits libres de groupes @l@mentaires divergents 

[DP]: le groupe F est alors divergent. Le fait que dans ces cas lh les groupes 

paraboliques soient eux m@me divergents intervient de fa~on essentielle pour 

@tablir ce r@sultat. Cette derni~re propri@t~ n'est pas toujours satisfaite dans 

le cas g@n@ral d'une vari@t@ de Hadamard pinc@e, comme nous le verrons dans 
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le paragraphe 3. Ceci nous amine ~ introduire la notion de d ive rgence  locale  

d'un groupe discret contenant des transformations paraboliques qui correspond 

la divergence d 'un sous-groupe parabolique ayant le plus grand exposant critique 

(cf. w Cette propri6t~ permet de contr61er la divergence de F: en adaptant un 

argument du ~ Sullivan [S], on ~tablit le crit~re de divergence suivant. 

THI~OREME A: Soit F un groupe gdomdtriquement fini contenant des transfor- 

mations paraboliques. Si 6r > ~p pour tout sous-groupe parabolique 7 ~, alors F 

est divergent. En particulier, si F est localement divergent, ii est divergent. 

Pour d6montrer ce th~orbme, nous consid6rons une mesure de Patterson, c'est- 

Z-dire une valeur d'adh~rence pour la convergence faible sur X U OX de mesures 

port~es par l'orbite Fy vue du point x. D'apr~s [P], [S], il suffit de montrer que 

cette mesure de Patterson n'a pas d'atome (cf. w La divergence de F entraine 

alors que cette mesure ne d6pend pas de y e t  est l'unique valeur d'adh~rence de 

la famille de mesures orbitales consid6r~es; on la note a~. 

Un proc~d~ classique permet d'associer ~ a~ une mesure #a sur le fibr~ uni- 

taire de X/F ,  invariante sous Faction du flot g6od~sique. Lorsque C(Ar) /F  est 

compact, cette mesure est finie; elle maximise l'entropie [S] et co'incide donc 

avec "la mesure de Bowen-Margulis". Lorsque F contient des transformations 

paraboliques, se pose de fa~on naturelle la question de la finitude de #~. On salt 

par exemple que #~ est finie lorsque X est un espace sym~trique de rang 1 ([S], 

[CI]) ou encore lorsque F est un groupe de Schottky localement divergent [DP]. 

Nous donnons maintenant une condition n6cessaire et suffisante pour que #a soit 

finie. 

TH~,OR~ME B: Soit F u n  groupe gdomdtriquement fini, divergent et contenant 

des transformations paraboliques. La mesure #~ est finie si et seulement 

si, pour tout sous-groupe parabolique P de F et tout point x E X la s~rie 
~-]~pev d( x, px )e -~rd(z'pz) converge. 

I1 d~coule des th~or~mes A et B que si F est g~om~triquement fini et localement 

divergent, alors #~ est finie. 

On peut se demander si, comme dans le cas des espaces sym6triques de rang 

1, la finitude g~om6trique d'un groupe discret F implique sa divergence. La 

r6ponse est n~gative et nous construisons dans le paragraphe w des groupes 

g~om6triquement finis convergents. D'apr~s le th6or~me A, il nous faut d'abord 

donner des exemples de groupes discrets paraboliques convergents. Pour cela, 

nous montrerons comment 6valuer la s~rie de Poincar6 d'un groupe parabolique P 

agissant sur X en fonction de la longueur de certains lacets g6od6siques contenus 
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dans les horosph~res de X/7 ~. Ces longueurs sont plus faciles ~ 6valuer que les 

quantit6s d(x,py),p C 7), qui interviennent dans le terme g~n~rique de la s~rie 

de Poincar6 P~,(x,y,s) car leur comportement est contrSl~ par une ~quation 

diff6rentielle lin~aire du 2nd ordre. En choisissant convenablement les coefficients 

de cette 6quation - -ce  qui revient ~ prescrire la courbure sectionnelle---on peut 

faire en sorte que P soit convergent (cf. w L'exemple X/'P construit aura en 

outre la propri6t6 d'avoir une courbure sectionnelle constante, ~gale ~t - 1  dans 

un bout et qui tend vers - 1  et toutes ses d6riv6es vers 0 dans l 'autre bout, 

appel6 b o u t  con t r ac t6 .  On peut maintenant remplacer un bout cuspidal d'une 

vari~t6 de courbure - 1  et de volume fini par le bout contract~ de l'exemple 

X/'P precedent; le revStement universel Y de la vari~t~ obtenue contient alors 

des isom6tries p e t  h, qui v~rifient les hypotheses du th~or~me suivant que nous 

d~montrerons dans la paragraphe w 

THI~ORI~ME C: Soit Y une varidtd de Hadamard pinc6e dont le groupe 

d'isomdtries contient un ~16ment parabolique p engendrant un groupe conver- 

gent et un ~Mment hyperbolique h dont les points fixes sont diffdrents du point 

fixe de p. Alors, il existe n > 1 tel que le groupe F engendrd par h n et p'~ soit un 

groupe g~omdtriquement fini convergent d'expos~nt ~r = ~(p). 

Puisque le groupe P fourni par ce th6or~me est g~om~triquement fini, toutes 

les g6od6siques ferm~es de Y/F sont contenues dans un convexe C(F) qui est une 

vari~t~ g bord de volume fini. Ce convexe est la r6union d'une vari~t6 compacte et 

d 'une composante cuspidale (cf. [B]); cette composante est contenue dans le bout 

contract6 de l'exemple X~ < p > du paragraphe w Ainsi, lorsqu'on tend vers 

l'infini dans C(F), la courbure sectionnelle tend vers - 1  et toutes ses d~riv6es 

vers 0. Rappelons qu'un groupe parabolique est divergent lorsque la courbure 

est constante au voisinage de son point fixe; ceci sugg~re que la divergence d 'un 

groupe parabolique d~pend d'une fa~on tr~s instable de la m6trique sur la vari6t~ 

ambiante. 

Ce travail est n~ d'une question de Martine Babillot concernant la dynamique 

des transformations paraboliques en courbure variable; nous la remercions vive- 

ment pour ses encouragements constants. 

w Crit~re de divergence 

La d~monstration du Th~or~me A utilise la mesure de Patterson dont nous 

rappelons la construction. Soit F u n  groupe discret non-616mentaire agissant 

sur une vari6t6 d'Ha~iamard pinc6e X et x ,y  deux points de X. On peut 
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choisir une fonction h: R + --+ R +, ind6pendante de x et y, telle que la s6rie 

g(x, y, s) = ~ e-sd(x'~Y)h(d(x, ~fy)) diverge si et seulement si s < 5r [P]. Lorsque 

F est divergent, on prend h = 1 et l 'on a: g(x,y,s)  = Pr(x,y,s);  lorsque F est 

convergent, la fonction h est "~ croissance lente" c'est-~-dire qu'elle est stricte- 

ment croissante et satisfait la condition suivante: pour tout e > 0, il existe r~ > 0 

tel que: 

Vt >_ O, Vr >_ r~, h(t + r) ~_ eCth(r). 

Pour s > 5r, on introduit la mesure orbitale 

_ 1 

"yEF 

Oh e.ry d~signe la masse de Dirac en ~,y. 

Pour tous points x et y de X,  il existe une suite (Sk) de R + convergeant vers 5r 

par valeurs sup~rieures telle que la suite de mesures (a~,y,sk) converge faiblement 

vers une mesure a~,y dont le support est At. On peut montrer que pour tout x '  E 

X,  la suite (ax',y,sk) converge aussi vers une mesure a~,,~ absolument continue 

par rapport  ~ a~,y avec d~riv~e de Radon-Nikodym 

dax,,y (~) = e_SrB~(x,,~ ) 
dax,y 

off B~(x',x) = lim~_~r z) - d ( x ,  z)) d~signe la distance alg~brique entre 

les horisph~res centr6es en ~ et passant respectivement par x '  et x (l'in~galit~ 

triangulaire implique en particulier IB~(x',x)m < d(x',x)). Les mesures a~,u , 

pour x C X,  sont appel~es m e s u r e s  de  P a t t e r s o n  associ~es au point y e t  ~ la 

suite (sk). 

Pour tout 7 �9 F et tout bor~lien B C At,  on a: 

= = f .  

On traduit  cette propri~t~ en disant que a est 5 r - c o n f o r m e  p o u r  P a c t i o n  

de  F. 

Certains points de l 'ensemble limite jouent un rSle particulier pour ces mesures. 

Ddfinition: Soit ~ �9 At.  On dit que ~ est u n  p o i n t  l imi t e  r ad i a l  s'il existe 

x �9 X et un sous-ensemble infini de l 'orbite Fx ~, distance born~e du rayon 

g~od~sique [x~[. L'ensemble de ces points forme l~ensemble  l imi t e  radia l ;  on 

le note Arad. 
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Rappelons que "le Lemme de l'ombre" de Sullivan entraine d'une part qu'une 

mesure ax,y n 'a  pas d'atomes dans Arid et d 'autre part que F est divergent d~s 

que ox, (Arod) > 0 (IS], [Co]). 
Dans la suite, nous nous restreindrons aux groupes g~om~triquement finis. 

On trouve darts [B] une ~tude precise de cette notion, nous utiliserons ici une 

caract~risation basde sur une description de l'ensemble limite. Rappelons que 

le point fixe ~p d'un sous-groupe parabolique maximal P de F e s t  u n  p o in t  

p a r a b o l i q u e  b o r n 6  si le quotient (At - ~ p ) / P  est compact (notons qu'un tel 

point ne peut  ~tre radial). 

Ddfinition: Le groupe F est g d o m ~ t r i q u e m e n t  fini si tout point de son 

ensemble limite est soit radial, soit parabolique born6. 

Puisqu'un groupe g~om~triquement fini contient ~ conjugaison pros un nombre 

fini de classes de conjugaison de sous-groupes paraboliques maximaux [B], Ar est 

la r~union de hrad et d 'un ensemble d~nombrable de points paraboliques bornds. 

Par consdquent, s'il existe sur Arad une mesure ax,y qui ne charge pas les points 

paraboliques, alors az,y(Arad) ---- a(Ar)  > 0 et F e s t  divergent. L'existence d'une 

telle mesure a~,y est garantie par la proposition suivante. 

PROPOSITION 1: Soit F u n  groupe gdom6triquement fini. Si pour tout sous- 

groupe parabolique maximal T' de F on a (~r > ~ ,  a/ors il existe sur Ar une 

mesure de Patterson sans atome. 

Ddmonstration: Le groupe F 6tant g6om6triquement fini, son ensemble lim- 

ite contient un nombre fini d'orbites F~I , . . . ,  F~l de points paraboliques born6s. 

D'apr~s le Lemme de Margulis [B], il existe des horiboules 7-/r telles que les hori- 

boules de la famille {~/7-/~ }Ter,x<i<~ soient disjointes ou confondues. Fixons un 

point y ext6rieur ~t toutes ces horiboules et une suite (Sk) tendant vers 5r par 

valeurs sup6rieures telle que (ay,y,~ k) converge vers au,y. Nous allons eonstruire, 

pour tout  i _< l un point zi E X tel que la mesure de Patterson az,,y ne charge 

pas ~i ; les mesures de Patterson az~,u 6tant absolument continues les unes par 

rapport  aux autres, la mesure az~,y ne chargera alors aucun des points ~i. 

Notons pour simplifier ~ l 'un des points ~1,--. ,~l et 7 ~ le stabilisateur de 

dans F. Puisque ~ est un point parabolique born6, on peut choisir un domaine 

fondamental 7300 pour l'action de T' sur O X - { ~ }  tel que 730oNAr soit relativement 

compact dans OX - {~}. Notons 7) le c6ne sur 73o0 issu de ~. On peut choisir z 

sufflsamment proche de ~ sur le rayon g6od6sique [y, ~[ tel que l'intersection de 

l 'orbite Fy avec 73 soit incluse dans un c6ne C issu de z, d'ouverture strictement 

inf6rieure ~ r ,  dirig6 selon la normale extdrieure ~ l'horiboule passant par z et 
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centrde en ~. On peut en outre supposer que la fronti~re de ee c6ne est de au, ~- 

mesure nulle. Notons pl,p2, . . ,  les ~ldments de 7 ~ et F' l'ensemble des ~l~ments 

7r E F tels que ~/y E 7:). Soit ];n le compldmentaire de ~k<,~PkC dans X U O X ,  la 

famille (])~),~ forme une suite d~croissante de voisinages du point ~ de fronti~re 

au,u-n~gligeable. On a alors, pour s > 5r: 

1 ' t o~,~,~(v.) _< g(v,y,~) E Z ~-~(~'~ ~)h(d(z,p~ y)). 
k > n  "y~ EF ~ 

La convexit~ des horisph~res et le choix de z font que l'angle au point z entre 

les deux segments g~od~siques [pkz, z] et [z, ~/y] est minor~ par une constante 

strictement positive, uniform~ment en k >_ 1 et "~ ~ F ~. La ligne bris~e r~union 

des deux segments g~odfisiques [pkz, z] et [z, q/y] est done une quasi-gfiod~sique 

et on a: 

d(z ,p~/y)  > d(z,p~z) + d(z,'~'y) - C 

off C est une constante strictement positive qui ne d~pend que de la borne 

sup6rieure de la courbure. Ainsi 

e s C  
_ e h(d(z,p~/y)) .  ~,~,~(v.) < g(~,~,~) ~ e -~(~'~) ~_, -~(~'~'~) 

k > n  "lt~F ~ 

Par hypoth~se, il existe e > 0 tel que 5r > 5p + e. Choisissons alors re tel que 

h(t + r) <_ eeth(r) pour t >_ 0 et r > re. On peut dans ce qui precede choisir z de 

sorte que d(z, F~y) > re si bien que pour k > n e t  "),~ ~ F ~ on a: 

I1 vient 

h(d(z, puy' y) ) < eed(z'Pk(~))h(d(z,'~' y) ). 

Gz,y,~(Y~) <_ esCaz,y,~(V) ~ e (-s+~)d(,'pk'). 
k ) n  

En faisant tendre s vers 5r le long de la sous-suite (sk), on en d~duit 

o~,A~} <- o,,~(v,,) _< d~%,,~(ox) ~ e(-~r+e)~(z'p~). 
k > n  

La s~rie ~,k>l e(--Sr+e)d(z'Pkz) ~tant convergente, on obtient az,v{~} = O. | 

Remarque: Le raisonnement prdc~dent montre que a~,v(~ ) = 0 d~s que F est 

g~omdtriquement fini et divergent; l'hypoth~se 5r > 6p n'est plus ndcessaire en 

effet dans ce cas puisque la fonction h ~tant dgale ~ 1, on a directement 

o~,A~} < e~r%~,~(ox) ~ e-~(~'~k~)" 
k > n  
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La proposition suivante appliqu6e s un sous-groupe parabolique maximal de F 

fournit un crit~re permettant de v6rifier l'hypoth~se de "trou critique" 5r > fp,  

qui apparaissait ddjg dans [DP]. 

PROPOSITION 2: Soit Fun groupe discret agissant sur une vari6t6 de Hadamard 

pincde X et G u n  sous-groupe non-trivial de F tel que AG ~ At. Si G est 
divergent, alors fir > 5a. 

D6monstration: Puisque G C F, on a f r  _> fG. L'in6galit~ stricte provient de 

la divergence du groupe G. Rappelons que G agit proprement discontinument 

sur l'ouvert (non-vide) OX - Ac. Soit G u n  domaine fondamental bor61ien pour 

cette action e t a  = a~,y une mesure de Patterson pour F. On a 

a(OX) = ~ a(gG) + a(Ac). 
gEG 

Puisque le support de a est Ar et que Ac ~ At, on a: a(G) > 0. 

L'6galit6 a(g6) = fa e-~rSr et le fait que 

IBr < 

entrainent 

Donc 
a(OX) >_ y ~  o(gG) > ~ e-~rd(g-'x'X)a(G). 

gEG gEG 

Comme G est divergent, il vient 5r > So. | 

En particulier, lorsque F est un groupe non-616mentaire qui contient un sous- 

groupe parabolique divergent T' on a dr > 5p. La Proposition 2 justifie la 

d6finition suivante. 

D~finition: Soit F un groupe discret agissant sur une vari6t6 de Hadamard pinc6e 

X. On dit que F est loca lement  d ivergen t  s'il contient des transformations 

paraboliques et s'il existe un sous-groupe parabolique divergent de F dont 

l'exposant critique est maximal parmi les sous-groupes 61~mentaires de F. 

Le Th6or~me A est maintenant une consdquence directe des Propositions 1 et 

2. 

Rappelons que le fait que a~,y(Arad) > 0 entraine l'ergodicit6 de l'action de F 

sur OX relativement h ax,y et que d~s lors, la mesure ax,y ne d6pend ni de y, ni 

de la suite (sk) qui a permis de la construire [S], [Y]; nous la noterons a~ dans 

la suite. 
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w F i n i t u d e  de  la mesure  #~ 

Rappelons le proc@d@ de Sullivan qui permet d'associer ~ une mesure de 

Patterson a~ une mesure sur le fibr@ unitaire tangent TI ( x / F )  invariante 

par le flot g~oddsique. 
A 

Notons OX • l'ensemble OX • OX priv@ de sa diagonale. Fixons une origine 
z~ 

x C X. On peut identifier le fibr@ unitaire tangent T t X  au produit OX• • R 
en associant ~ un @l~ment (y,v) E T I x  le triplet (~- ,~+,r)  off ~- et ~+ sont 

les extr@mit@s de la g@od@sique orient@e d@termin@e par (y, v) et r = Be+ (y, x). 

Dans ces coordonn@es, l'action d'une isom@trie ? de F est donn@e par 

7(~-, ~+, r) = (7~-, 7~ +, r + B~+ (x,-/-Ix)) 

tandis que le flot g@od4sique (gt)teR agit sur T I x  par 

= - t ) .  

Pour tout (~-,~+) E OX~OX, la quantit@ 1 ~(B~- (x, y) + B~+ (z, y)) ne d4pend 

pas du point y sur la g@od@sique (~-~+); on la note (~-I~+)x. 

Puisque a ,  est (fr-conforme, la mesure e 2~r (4-M +). a ,  (d~-)a ,  (d~ +) est une me- 

sure F-invariante sur OX • et ne d@pend pas de x: c'est le courant g@od@sique 

c a associ@ s a = (a~). La mesure/~a = c a | dt est invariante sous les actions de 
A 

F et du riot g@od@sique (9,); son support est A t •  • ~. Elle induit donc par 

passage au quotient une mesure #a, invariante sous l'action du flot g@od@sique 
A 

(g,) sur  TI(x/F) et dont le support est (Ar•  • ~) /F .  
A 

Lorsque F est cocompact ou convexe cocompact, (At • h r  • R)/F est compact; 

#a est alors finie, c'est la mesure d'entropie maximale ([S],[K], [Y]). Lorsque F est 

g@om@triquement fini, divergent, et contient des transformations paraboliques, on 

peut d'abord se poser la question de la finitude de #a (remarquons que si F est 

convergent, a~ charge uniquement les points paraboliques et la mesure #a est 

clairement de masse infinie). 

D4monstration du Thdor~me B: La projection sur X du support de/~a est con- 

tenue dans C(Ar). Le groupe F @tant g@om@triquement fini, le quotient C(Ar) /F  

se d@compose en la r@union disjointe d'un compact Co et d'une famille finie 

C1, . . .  , Cl de "bouts cuspidaux": pour i _> 1, chaque C~ est isom@trique au quo- 

tient de l'intersection de C(Ar) et d'une horiboule 7-Q, par un groupe parabolique 

7'~. Choisissons un domaine fondamental bor41ien g~ pour l'action de F sur la 

pr@image de C~ dans X. Sans perte de g4n~ralit@, on peut supposer que Co est 
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relativement compact et que, pour i > 1, Ci est un domaine fondamental pour 

l'action de Pi sur 7-Q~ n C(Ar).  

On a: 

t /o i~ dt. u~(TI(x/r)) = ~-~ fza(T'Ci) = Z a c~(d~-d~ +) -~+)ne~ 
i=O i=O X x OX 

Fixons un point x E Co. Puisque Co est relativement compact, on a, pour toute 

g~od6sique (~-~+) rencontrant Co: 0 < (~-l~+)x < D off D est le diam~tre de 
Co. Par cons6quent,/5~(T1C0) < az(OX)2De 2~rD. 

Ainsi, la mesure #~ est finie si et seulement si fi~(T1Ci) est fini pour i = 

1, . . .  ,l. Notons pour simplifier C l'un des domaines fondamentaux Ci, 7 ~ le 

groupe parabolique et ~ le point parabolique correspondants. Puisque F est gdo- 

mdtriquement fini, on peut choisir un domaine fonda.mental bor61ien T)~ pour 

l'action de P sur OX - {~} tel que/9oo n Ar soit relativement compact dans 

OX - {~}. Le groupe F 6tant divergent, on a ax{~} -- 0 et donc 

fza (TIC) = p,~qeT~ iz)~• Ca ( d~- d~+ ) ~ _ ,  + )nc dt" 

En utilisant le fait que c ~ est invariante sous Faction de F, on obtient: 

~ a ( T a C ) =  q~ET~ c~(&/-d~ +) f dr. 
p, or • J (~7- ~?+)np- 1C 

Puisque C est un domaine fondamental pour Faction de 7 ) sur 7/~ n C(Ap), on a 

donc: 

/ za (T iC)  = ~ fT) c~(drl-drl+) f dt. 
pEP ooxp'Doo J ('r/- r/+ ) n?-./~ 

D'un point de vue g6om~trique, toute g~od~sique (~/-~/+) qui passe par 7-Q se 

projette sur M e n  une g6od6sique qui fait une incursion dans la r6gion cuspidale 

C et le terme f(n-n+)nnr dt correspond h la longueur de cette incursion. Comme 

7:)~ OAr est relativement compact dans OX - {~}, il existe un compact K de X 

contenant x tel que pour toute g6od6sique (77-~/+) issue de 7:)o~nAr et rencontrant 

7/~, le premier point d'intersection de (77-77+) n 7-/~ appartienne ~ K; une telle 

g~od~sique v6rifie donc 0 _< (~/-I~/+)= < d iamK.  Si de plus ~/+ E pT)oo n At,  la 

g6od6sique (~+~-)  passe par p(g) et la diffdrence I f(n_n+)nn, dt - d(x,px)l est 
donc major6e par 2 diam K. Finalement il existe une constante C > 0 telle que 

1 
-C E a~(pI)oo)(d(x,px) - C) < #~(T1C) <_ C E ax(PT)~176 + C). 

PET ~ pEP 
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Puisque ax est 5r-conforme, ax(pT)oo) = fz)~ e-~rS'(P-'~'X)ax(d~?)" Comme 

:Doo n Ar est relativement compact dans OX - {~} il existe e > 0 tel que pour 

tout ~ E :Doo ~ Ar et pour tousles  p ~ 7) sauf peut-~tre un nombre fini, l'angle 

au point x entre les segments g~od~siques Ix,p-ix] et [x, 77) soit sup~rieur ~ e ; le 

terme ax(pT)oo) est donc ~quivalent ~ e -Srd(x,px), uniformdment en p ~ 7). Ceci 

termine la d~monstration. | 

COR.OLLAIRE 3: Soit F un groupe gdom6triquement fini tel que 5r > 5p pour 

tout sous-groupe parabolique 7). Alors, la mesure tt ~ est finie. 

Ce r~sultat est une consequence directe du Th~or~me B. 

w G r o u p e s  p a r a b o l i q u e s  d~isom~tries des  vari6t~s de Hadamard 

Consid~rons d 'abord le cas de l'espace hyperbolique r~el H ~, identifi~ au demi- 

espace sup~rieur. Soit p une isom~trie parabolique fixant le point oo; la transfor- 

mation p induit alors sur R ~-1 -- 0]t~" - (oe} une isom~trie euclidienne et, par 

un calcul ~l~mentaire, on trouve que la suite (d(O,p'~O) - 21ogn),~>_l converge. 

L'exposant critique du groupe (p) est donc 1/2 et le groupe est divergent. Si 

maintenant 7) est un groupe d'isom~tries paraboliques de H ~, il contient, d'apr~s 

l'un des th~or~mes de Bieberbach, un sous-groupe ab~lien de rang k, d'indice fini 

et agissant par translations sur un sous-espace Rk. On montre alors que la s~rie 

de Poincar~ de 7) est de m~me nature que la s~rie ~ 1/(nl  + n2 + . . .  + nk)2s; 

l 'exposant critique de 7) est donc k/2 et 7) est divergent. 

Ce r~sultat se g~ndralise aux espaces sym~triques de rang 1 que l'on note ici 

K]I~, avec K --= R, C, H ou 0.  En effet, soit 7 ) un groupe parabolique d'isom~tries 

agissant sur K ~ ' ;  quitte k extraire un sous-groupe d'indice fini, 7) peut ~tre 

repr~sent~ comme un r~seau co-compact d 'un groupe lin~aire nilpotent simple- 

ment connexe N. Si Z ( N )  d~signe le centre de N, posons I --- d im(Z(N) [~ Im K) 

et k = d i m ( N / Z ( N )  n I m g ) ;  l 'exposant critique de 7) est ( 2 / +  k) /2  et 7) est 

divergent [CI]. 

De faqon g~n~rale, lorsque 7) est un groupe parabolique, ab~lien de rang k 

agissant sur une varidt~ de Hadamard pinc~e, son exposant critique est sup~rieur 

ka/2, off - a  2 est la borne supdrieure de la courbure sur X; n~anmoins, le 

groupe 7) peut ~tre convergent et nous allons en donner des exemples. Nous 

~tablissons tout d 'abord un lemme qui nous permettra  d'~tudier la nature de la 

s~rie de Poincar~ d'un groupe parabolique. 

Soit 7) un groupe discret d'isom~tries paraboliques agissant sur X. Notons 

le point fixe de 7) et choisissons un point de r~f~rence o E X. Soit t -~ 
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c(t) un param~trage par longueurs d'arcs du rayon g~od~sique [0, ~[ ; notons 7/t 

l'horisph~re centr~e en ~ et passant par c(t). Pour tout p E P,  on note lp(t) la 

distance g~od~sique, pour la m~trique Riemannienne induite sur 7/t, entre les 

points c(t) et p(c(t)); la fonction t --+ lp(t) est strictement ddcroissante et tend 

vers 0 exponentiellement vite quand t tend vers + ~ .  D~finissons tp c o m m e  

l 'instant off Ip(tp) = 1 si Ip(O) > 1, et par tp = 0 si lp(O) < 1 (ce qui ne peut se 

produire que pour un hombre fini de p E P,  puisque P e s t  discret). Le lemme 

suivant relie la distance d(o, po) ~ tp. 

LEMME 4: Les series ~ p e p  e -sd(~176 et ~ p e p  e -2stn sont de m~me nature. 

DEmonstration: Nous utiliserons le fait que si deux points d'une horisph~re 7/ 

de X sont ~ distance horisph~rique 1, leur distance pour la m~trique ambiante 

est sup(!rieure ~ une constante strictement positive d~pendant uniquement de 

la borne inf~rieure sur la courbure de X [HH, Th 4.6]. D~signons maintenant 

par P~ l'ensemble des ~l~ments p E P tels que t(p) > 1. Consid~rons le chemin 

r~union des segments g~od~siques [o, C(tp)], [C(tp), p(c(tp))] et ~(C(tp)), p(o)]. Par 

la convexit6 des horisph~res, les angles de ce chemin aux sommets C(tp) et p(c(tp)) 
sont sup~rieurs ~ r / 2 .  D'autre part, pour p E P~, la longueur de ces trois segments 

g~od~siques est minor~e par une constante strictement positive inddpendante de 

p. Le th~or~me de comparaison de Topogonov entraine alors que la quantit~ 

I d(o, p(o)) - 2tpI est born~e ind~pendamment de p. Le lemme en r~sulte puisque 

T ) - "P~ est fini. I 

Nous allons maintenant construire une vari(!t~ de Hadamard pinc~e Y de di- 

mension r, sur laquelle tout groupe de Bieberbach de rang r - 1 agit comme 

groupe parabolique convergent. Pour cela, posons Y -- ]~r-1 • R et munissons Y 

d'une m~trique Riemannienne de la forme g = T2(t)dx2uc + dt 2, off dx ~  c2  est une 

mfitrique euclidienne fix~e sur IR r - l ,  et T u n e  fonction C ~ strictement positive. 

Le groupe des isom~tries de g contient les isomdtries euclidiennes de R r-1 et en 

particulier tousles groupes de Bieberbach de rang r - 1. La courbure sectionnelle 

au point (x, t) est ind~pendante de x: dans un plan contenant le vecteur O/Ot, 
elle vaut g( t )  = -TH(t) /T(t)  et dans un plan horizontal, elle vaut - g 2 ( t ) .  Pour 

que Y soit une vari~t~ de Hadamard pinc~e, il suffit que K soit born~e entre 

deux constantes strictement ndgatives. Remarquons que pour T(log s) = 1Is on 

obtient un module de l'espace hyperbolique H r. 

Supposons que T vdrifie, pour s assez grand, T(log s + 2 log log s) = 1Is. Alors, 

en posant u(s) = log s + 2 log log s, la relation T(u(s)) = 1Is entraine: 

T"(u(s)) 2su'(s) + s2u"(s) 
g ( u ( s ) ) -  T ( u ( s ) ) -  s3(u'(s)) 3 
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On en d~duit que lims-+~ K(u(s))  = -1 .  En fait K(s) tend vers - 1  et toutes 

ses d~riv~es vers 0 lorsque s -~ +co. 

Consid~rons une translation p sur R r-1 • {0} de distance euclidienne de trans- 

lation 1. Les droites euclidiennes ~tant des g~od~siques pour la m~trique in- 

duite sur les horisph~res, on a: tp~ = T- l (1/ Inl ) .  Donc, pour Inl assez grand, 

tpn = log Inl + 21oglog Int. Ainsile groupe cyclique engendrd par p a 1/2 comme 

exposant critique et est convergent. Plus g~n~ralement, si "Pest  un groupe de 

Bieberbach contenant un sous-groupe ab~lien d'indice fini de rang k, le groupe 

P est convergent d'exposant k/2. 
Soulignons que le choix precedent de T ne prescrit la courbure que sur un 

voisinage R ~-1 • [/3, +col. On peut en particulier imposer ~ la courbure de Y 

d'etre constante ~gale s - 1  dans if( ~-1 • - co, a], pour tout a fixd ~ l'avance. I1 

suffit de choisir T tel que T(log s) = 1/s pour 0 < s <:_ e ~ et T(log s+2  log log s) = 

1/s pour s ~ /3  oh 13 est un r~el positif suffisamment grand; on choisit/3 tel que 

T' (~) < T'(~), afin que l'interpolation entre les restrictions impos~es sur ] - c o ,  c~] 

et [ft, +co[ puisse ~tre r~alis~e par une fonction convexe aussi r~guli~re qu'on le 

souhaite. 

w C o n s t r u c t i o n  de  groupes g6om6triquement finis non-~16mentaires 
convergents 

Soit F u n  groupe discret de covolume fini mais non cocompact agissant sur H ~. 

Chaque bout Af de ]H~/F est isomdtrique au quotient d'une horiboule de Err par un 

groupe de Bieberbach 1rl (Af) de rang r -  1. Ce groupe agit aussi isom~triquement 

sur lI~ r - t  • R muni de la m~trique g du w ; pour cette m~trique g le groupe 

rl(Af) est convergent. On peut alors recoller le quotient (R r-1 • [~,+oo[)/F 

avec ]E r / F  -Af ;  on obtient une vari~t~ de Hadamard pincde Y sur laquelle F agit 

isom~triquement. 

D~monstration du Thdor~me C: Fixons un point o sur l'axe de h. Quitte 

remplacer h et p par des puissances, on peut trouver des compacts Up et L/h, 

voisinages respectifs dans Y U OY du point fixe de p e t  des points fixes de h, tels 

que: 

(1) L(p Nl~ h = O et o ~ (Up UL/h); 

(2) hk(OX -Llh)  C L~h, pk(OX --14p) C Up pour tout k E Z*; 

(3) Up et L/h sont vus depuis o sous un angle minor~ par une constante stricte- 

ment positive. 

Le groupe F engendr~ par p e t  h est un groupe libre; tout ~l~ment ~ E F different 
n k  

de Id s'~crit de faqon unique comme un produit w ~ t . . . w k  , avec wi E {p,h}, 
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wi # wi+l, ni E Z* et on a: ,,/(XUOX - (Up uUh))  c ~1 ,  D'apr~s (3), s ix  E L/h 
et y E L/h, le chemin 6gal ~ la rdunion des segments g6od6siques [x, o] et [o, y] est 

une quasi-g6od6sique. I1 existe donc une constante C > 0, ind6pendante de x et 

de y, telle que d(x, y) >_ d(o, x) + d(o, y) - C. Par cons6quent, la propri6t6 (2) 

entraine 

(4) d(~ ""hnkPm~~ >- E d(~176 + E d(~176 2kC. 
l~i(_k l(__i(k 

Puisque l 'exposant critique du groupe cyclique < h > est nul, la s6rie de Poincar~ 

Pr(o, o, 5(p)) est de mSme nature que la s6rie 

k_)l n~,rniEZ* 

en s = J(p). D'apr~s (4), 

k> l  nEZ* mEZ* 

que l'on majore par 

e-st(h) 
E ( 2 e 2 8 r  E e-sd(~176 
k_)l m~Z* 

Quitte ~ remplacer h par une puissance h n, on peut supposer que 

e-5(p)l(h) 
2e25<v)C E e-5(n)d(~176 < 1. 

1 - e -5(v)l(h) rnEZ* 

L'exposant critique de F est donc inf~rieur h 5(p) et on a Pr(o, o, 5(p)) < +oo. 

Comme (p) C F, on a aussi 5(p) < 5r. Finalement, F est convergent d'exposant 

5(p). 
Pour montrer que F est g~om~triquement fini, il nous faut d'abord montrer 

que tout point ~ E Ar qui n'est fix~ par aucune transformation parabolique 

est radial. Pour cela, nous utilisons une ddfinition des points radiaux due 

B. Bowditch ([B, Prop. 5-2-1]), ~quivalente ~ celle donn~e dans le w le point 

est radial si et seulement s'il existe une suite (Tk) de F telle que pour tout 

point ~/E Ar - {~} la suite ((Tk(~/),Tk(~))) reste dans un compact de A t •  
Lorsque ~ est le point fixe attractif d'une isom6trie hyperbolique 7 E F, il suffit 

de poser 7k = 7 -k pour tout k > 1. Sinon, il existe une unique suite (w'~')i>>.l 
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avec wi �9 {p, h}, ni �9 Z* et Cdi+ 1 ~ 0.) i telle que ~ ---- limk-,+oo w,}l . . . w  k nk (o) 

; on pose alors q'k ---- w~ -'~k "'" Wl '~1- Par la propridtd de ping-pong, d'une part 

3'k~ �9 U~+I et d 'autre part, pour tout ~/�9 Ar - {~}, ")'k'} appartient & U ~  pour 

k assez grand. La condition Wk r Wk+l et le fait que les ensembles Uh et Up 

soient disjoints permettent  de conclure. 

Montrons enfin que les points paraboliques de Ar sont bornds. Ceci rdsulte en- 

core de la dynamique de ping-pong : les sous-groupes paraboliques maximaux de 

F sont en effet tous conjuguds au groupe cyclique engendrd par p e t  les translatds 

par p des compacts AF N/dh sont disjoints et recouvrent AF - {~}. | 

Remarque: De m6me, on peut obtenir un groupe gdomdtriquement fini vdrifiant 

la propridtd de trou critique sans ~tre localement divergent. Dans la construction 

prdcddente, il suffit de remplacer le groupe hyperbolique < h > par un groupe 

purement loxodromique, non dldmentaire et d'exposant strictement supdrieur & 

1/2. 
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