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ABSTRACT

In this paper, we study the behaviour of the Poincaré series of a geometri-
cally finite group T of isometries of a riemannian manifold X with pinched
curvature, in the case when I’ contains parabolic elements. We give a suf-
ficient condition on the parabolic subgroups of T' in order that ' be of
divergent type. When T is of divergent type, we show that the Sullivan
measure on the unit tangent bundle of X/T is finite if and only if cer-
tain series which involve only parabolic elements of I' are convergent. We
build also examples of manifolds X on which geometrically finite groups
of convergent type act.
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Dans la suite, une variété de Hadamard pincée sera une variété Rieman-
nienne simplement connexe, complete et a courbure pincée entre deux constantes
strictement négatives —b% et —aZ.

Soit X une telle variété, on peut compactifier X par son bord visuel que
’on notera 8X. Un groupe I" d’isométries de X est discret s’il agit proprement
discontiniiment et librement sur X; ’action de I" sur X se prolonge en une action
par homéomorphismes sur X U0X. Un élément de I' — {Id} est hyperbolique
ou parabolique selon qu’il fixe deux points de 0X ou un seul. Le groupe discret
I" laisse invariant I'ensemble limite Ap C X, défini comme ’ensemble des points
d’accumulation dans X UJX d’une orbite 'z oit z € X. L’ensemble Ar contient
un, deux ou une infinité de points: dans le premier cas, I" est parabolique
(tous ses éléments autres que Id sont paraboliques), dans le deuxiéme cas, I’
est engendré par une isométrie hyperbolique et dans le dernier cas, I' est dit
non-élémentaire.

Soient z et y deux points de X et s un réel positif. On définit la série de
Poincaré associée a I par

Pr(z,y,s) = ) e 4
ver

ou d est la distance Riemannienne sur X. Le comportement de cette série est
indépendant des points = et y et on note dr son exposant critique, i.e. la borne
inférieure des s tels que Pr(z,v,s) est fini. On dit que I' est convergent (resp.
divergent) si Pr(z,y,dr) converge (resp. diverge).

Dans cet article, nous nous intéressons a la question de la convergence ou
de la divergence d’un groupe I' géométriquement fini, c’est-a-dire qui laisse
invariant une sous-variété convexe C(Ar) C X de codimension 0, et telle que
le quotient C(Ar)/T soit de volume fini. Lorsque C(Ar)/T" est compact (ce qui
équivaut a dire que I' ne contient pas de transformation parabolique), on sait
que I' est divergent et que son exposant critique est strictement positif dés que
' n’est pas cyclique [Co]; plus généralement, ce résultat reste vrai si X est un
espace hyperbolique au sens de Gromov.

Lorsque I" contient des éléments paraboliques, les seuls résultats connus jusqu’a
présent sur la divergence concernent les groupes agissant sur un espace symétrique
de rang 1 ([S], [CI]) et certains produits libres de groupes élémentaires divergents
[DP]: le groupe I' est alors divergent. Le fait que dans ces cas 1a les groupes
paraboliques soient eux méme divergents intervient de fagon essentielle pour
établir ce résultat. Cette derniére propriété n’est pas toujours satisfaite dans
le cas général d’'une variété de Hadamard pincée, comme nous le verrons dans
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le paragraphe 3. Ceci nous ameéne 3 introduire la notion de divergence locale
d’un groupe discret contenant des transformations paraboliques qui correspond &
la divergence d’un sous-groupe parabolique ayant le plus grand exposant critique
(cf. §1). Cette propriété permet de controler la divergence de I': en adaptant un
argument du & Sullivan [S], on établit le critére de divergence suivant.

THEOREME A: Soit I' un groupe géométriquement fini contenant des transfor-
mations paraboliques. Si ér > §p pour tout sous-groupe parabolique P, alors T'
est divergent. En particulier, si I" est localement divergent, il est divergent.

Pour démontrer ce théoréme, nous considérons une mesure de Patterson, c’est-
a-dire une valeur d’adhérence pour la convergence faible sur X U9X de mesures
portées par P'orbite I'y vue du point z. D’apreés [P], [S], il suffit de montrer que
cette mesure de Patterson n’a pas d’atome (cf. §1). La divergence de I" entraine
alors que cette mesure ne dépend pas de y et est 'unique valeur d’adhérence de
la famille de mesures orbitales considérées; on la note o.

Un procédé classique permet d’associer & o, une mesure u sur le fibré uni-
taire de X/T', invariante sous 'action du flot géodésique. Lorsque C(Ar)/T" est
compact, cette mesure est finie; elle maximise I’entropie [S] et coincide donc
avec “la mesure de Bowen-Margulis”. Lorsque I' contient des transformations
paraboliques, se pose de fagon naturelle la question de la finitude de p?. On sait
par exemple que u” est finie lorsque X est un espace symétrique de rang 1 ([9],
[CI]) ou encore lorsque I' est un groupe de Schottky localement divergent [DP].
Nous donnons maintenant une condition nécessaire et suffisante pour que u? soit
finie.

THEOREME B: Soit I un groupe géométriquement fini, divergent et contenant
des transformations paraboliques. La mesure p° est finie si et seulement
si, pour tout sous-groupe parabolique P de T' et tout point x € X la série
> pep d(z, px)e~%rd(=P2) converge.

11 découle des théorémes A et B que si I' est géométriquement fini et localement
divergent, alors p” est finie.

On peut se demander si, comme dans le cas des espaces symétriques de rang
1, la finitude géométrique d’un groupe discret I’ implique sa divergence. La
réponse est négative et nous construisons dans le paragraphe §4 des groupes
géométriquement finis convergents. D’aprés le théoréme A, il nous faut d’abord
donner des exemples de groupes discrets paraboliques convergents. Pour cela,
nous montrerons comment évaluer la série de Poincaré d’un groupe parabolique P
agissant sur X en fonction de la longueur de certains lacets géodésiques contenus
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dans les horosphéres de X/P. Ces longueurs sont plus faciles & évaluer que les
quantités d(z,py),p € P, qui interviennent dans le terme générique de la série
de Poincaré Pp(z,y,s) car leur comportement est contrélé par une équation
différentielle linéaire du 2nd ordre. En choisissant convenablement les coefficients
de cette équation —ce qui revient & prescrire la courbure sectionnelle—on peut
faire en sorte que P soit convergent (cf. §3). L’exemple X/P construit aura en
outre la propriété d’avoir une courbure sectionnelle constante, égale & —1 dans
un bout et qui tend vers —1 et toutes ses dérivées vers 0 dans 'autre bout,
appelé bout contracté. On peut maintenant remplacer un bout cuspidal d’une
variété de courbure —1 et de volume fini par le bout contracté de ’exemple
X/P précédent; le revétement universel ¥ de la variété obtenue contient alors
des isométries p et h, qui vérifient les hypotheses du théoréme suivant que nous
démontrerons dans la paragraphe §4.

THEOREME C: Soit Y une variété de Hadamard pincée dont le groupe
d’isométries contient un élément parabolique p engendrant un groupe conver-
gent et un élément hyperbolique h dont les points fixes sont différents du point
fixe de p. Alors, il existe n > 1 tel que le groupe I" engendré par h™ et p™ soit un
groupe géométriquement fini convergent d’exposant 6r = ().

Puisque le groupe I' fourni par ce théoréme est géométriquement fini, toutes
les géodésiques fermées de Y/T sont contenues dans un convexe C(I') qui est une
variété a bord de volume fini. Ce convexe est la réunion d’une variété compacte et
d’une composante cuspidale (cf. [B]); cette composante est contenue dans le bout
contracté de I’exemple X/ < p > du paragraphe §3. Ainsi, lorsqu’on tend vers
Pinfini dans C(I'), la courbure sectionnelle tend vers —1 et toutes ses dérivées
vers 0. Rappelons qu’un groupe parabolique est divergent lorsque la courbure
est constante au voisinage de son point fixe; ceci suggere que la divergence d’un
groupe parabolique dépend d’une fagon trés instable de la métrique sur la variété
ambiante.

Ce travail est né d’une question de Martine Babillot concernant la dynamique
des transformations paraboliques en courbure variable; nous la remercions vive-
ment pour ses encouragements constants.

§1. Critére de divergence

La démonstration du Théoreme A utilise la mesure de Patterson dont nous
rappelons la construction. Soit I' un groupe discret non-élémentaire agissant
sur une variété d’Hadamard pincée X et z,y deux points de X. On peut
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choisir une fonction h: R* — R*, indépendante de z et y, telle que la série
9(z,y,5) = 3 e~ U= h(d(z, vy)) diverge si et seulement si s < & [P]. Lorsque
" est divergent, on prend h = 1 et I'on a: g(z,y,s) = Pr(z,y,s); lorsque I est
convergent, la fonction h est “a croissance lente” c’est-a-dire qu’elle est stricte-
ment croissante et satisfait la condition suivante: pour tout € > 0, il existe r. > 0
tel que:

Vt>0, Vr>re, h{t+r)<eth(r).

Pour s > dr, on introduit la mesure orbitale

Tans = s S I, ))ery
~ver
ol €,y désigne la masse de Dirac en vy.

Pour tous points z et y de X, il existe une suite (sx) de Rt convergeant vers ér
par valeurs supérieures telle que la suite de mesures (05,4, ) converge faiblement
Vers une mesure o, , dont le support est Ar. On peut montrer que pour tout =’ €
X, la suite (04,y,s,) converge aussi vers une mesure o, , absolument continue
par rapport a o, avec dérivée de Radon-Nikodym

d_az/_,y(é) = ¢~0rBe(@',3)

dos,y

ol Be(z',z) = lim,¢(d(2',2) — d(z,z)) désigne la distance algébrique entre
les horispheres centrées en £ et passant respectivement par z’ et z (I'inégalité
triangulaire implique en particulier |Bg(z',z)| < d(z',z)). Les mesures oy,
pour z € X, sont appelées mesures de Patterson associées au point y et a la
suite (sg)-.

Pour tout v € T et tout borélien B C Ar, on a:

-1
A )
B
On traduit cette propriété en disant que o est ér-conforme pour ’action
deT.
Certains points de I’ensemble limite jouent un réle particulier pour ces mesures.

Définition: Soit £ € Ar. On dit que £ est un point limite radial s’il existe
z € X et un sous-ensemble infini de 'orbite I'z & distance bornée du rayon
géodésique [z€[. L’ensemble de ces points forme ’ensemble limite radial; on
le note A, q.q.
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Rappelons que “le Lemme de 'ombre” de Sullivan entraine d’une part qu’une
mesure o, , n’a pas d’atomes dans A,.4 et d’autre part que I' est divergent dés
que 03 4(Araa) > 0 ([S], [Co}).

Dans la suite, nous nous restreindrons aux groupes géométriquement finis.
On trouve dans [B] une étude précise de cette notion, nous utiliserons ici une
caractérisation basée sur une description de 1’ensemble limite. Rappelons que
le point fixe £&p d’un sous-groupe parabolique maximal P de I' est un point
parabolique borné si le quotient (Ar — &p)/P est compact (notons qu’un tel
point ne peut étre radial).

Définition: Le groupe I' est géométriquement fini si tout point de son
ensemble limite est soit radial, soit parabolique borné.

Puisqu’un groupe géométriquement fini contient & conjugaison prés un nombre
fini de classes de conjugaison de sous-groupes paraboliques maximaux [B], Ar est
la réunion de A,qq4 et d’un ensemble dénombrable de points paraboliques bornés.
Par conséquent, s’il existe sur A,qq une mesure o, qui ne charge pas les points
paraboliques, alors 05 4(Areqd) = 0(Ar) > 0 et ' est divergent. L'existence d’une
telle mesure o, , est garantie par la proposition suivante.

PRroPOSITION 1: Soit T' un groupe géométriquement fini. Si pour tout sous-
groupe parabolique maximal P de T" on a ér > dp, alors il existe sur Ar une
mesure de Patterson sans atome.

Démonstration: Le groupe T' étant géométriquement fini, son ensemble lim-
ite contient un nombre fini d’orbites ['¢y,...,T'¢ de points paraboliques bornés.
D’apreés le Lemme de Margulis [B], il existe des horiboules He, telles que les hori-
boules de la famille {yH¢, }yer,1<i<i soient disjointes ou confondues. Fixons un
point y extérieur & toutes ces horiboules et une suite (sx) tendant vers dr par
valeurs supérieures telle que (o, s, ) converge vers g, .. Nous allons construire,
pour tout i < [ un point z; € X tel que la mesure de Patterson o, , ne charge
pas &; ; les mesures de Patterson o, , étant absolument continues les unes par
rapport aux autres, la mesure o, , ne chargera alors aucun des points &;.
Notons pour simplifier £ 1'un des points &1,...,& et P le stabilisateur de £
dans I'. Puisque £ est un point parabolique borné, on peut choisir un domaine
fondamental Do, pour 'action de P sur §X —{¢} tel que D NAr soit relativement
compact dans X — {£}. Notons D le cone sur Dy, issu de {. On peut choisir 2
suffisamment proche de £ sur le rayon géodésique [y, [ tel que Vintersection de
l’orbite T'y avec D soit incluse dans un céne C issu de z, d’ouverture strictement
inférieure & m, dirigé selon la normale extérieure a I’horiboule passant par z et
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centrée en £. On peut en outre supposer que la frontiere de ce cone est de oy .-
mesure nulle. Notons p1,ps,... les éléments de P et T' ’ensemble des éléments
7' €T tels que v’y € D. Soit V, le complémentaire de | J;,, pxC dans X UOX, la
famille (V,,), forme une suite décroissante de voisinages du point £ de frontiere
oy y-négligeable. On a alors, pour s > ér:

TenalVe) € Zms 3 57 &P i)
YV k>nylel
La convexité des horisphéres et le choix de z font que I’angle au point z entre
les deux segments géodésiques [prz, 2] et [2,7'y] est minoré par une constante
strictement positive, uniformément en k > 1 et 4’ € I'. La ligne brisée réunion
des deux segments géodésiques [pxz, 2] et [2,4'y] est donc une quasi-géodésique
et on a:
d(2,p67'y) 2 d(z,px2) + d(2,7'y) = C

ou C est une constante strictement positive qui ne dépend que de la borne
supérieure de la courbure. Ainsi

esC

Oz,y,8 (Vn) <

—sd(z,px2) —sd(z,'y’y) ,
€ e h(d(z, )
~ 9y, y,8) E Z (d(z,pe7'v))

k>n y'er

Par hypothese, il existe € > 0 tel que §r > ép + €. Choisissons alors 7 tel que
h(t +7) < e*h(r) pour t > 0 et r > r.. On peut dans ce qui precede choisir z de
sorte que d(z,I"y) > r¢ si bien que pour k > n ety € IV on a:

h(d(z, pr'y)) < e“EPEDh(d(z, 7'y)).

11 vient

O'z,y,s(vn) < escaz,g,s(D) Z e(—s+e)d(z,pkz)‘
k>n

En faisant tendre s vers dp le long de la sous-suite (sx), on en déduit

Uz,y{{} < Uz,y(vn) < eﬁrCJz,y(aX) Z e(—5r+€)d(Z»PkZ)_

k>n
La série 3, (=00 t94(=:Pk2) tant convergente, on obtient o, {¢} = 0. 1

Remarque: Le raisonnement précédent montre que 0,,(§) = 0 dés que T' est
géométriquement fini et divergent; I'hypothése dr > dp n'est plus nécessaire en
effet dans ce cas puisque la fonction h étant égale a 1, on a directement

02y (€} < €%, 4 (8X) z e~ 0rd(z.pi2)
k>n
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La proposition suivante appliquée a un sous-groupe parabolique maximal de T’
fournit un critére permettant de vérifier I’hypothese de “trou critique” ér > ép,
qui apparaissait déja dans [DP)].

PROPOSITION 2: Soit I" un groupe discret agissant sur une variété de Hadamard

pincée X et G un sous-groupe non-trivial de T tel que Ag # Ap. Si G est
divergent, alors ér > d¢.

Démonstration: Puisque G C I, on a dr > dg. L’inégalité stricte provient de
la divergence du groupe G. Rappelons que G agit proprement discontinument
sur ouvert (non-vide) 8X — Ag. Soit G un domaine fondamental borélien pour
cette action et 0 = 0, une mesure de Patterson pour I'. On a
o(0X) = 3" 0(99) + o(Ag).
geG
Puisque le support de ¢ est Ar et que Ag # Ar, on a: o(G) > 0.
Légalité 0(gG) = [, e~9rBe(97'22) 45 (£) et le fait que

|Be(g™ 2, 2)| < d(g™ ", 2)

entrainent
0(gg) 2 e~ =% g(g).
Donc
0(0X) > Y a(gg) > Y e7irdeT =e)g(G).
9€eG geG
Comme G est divergent, il vient r > d¢. |

En particulier, lorsque I" est un groupe non-élémentaire qui contient un sous-
groupe parabolique divergent P on a ér > dp. La Proposition 2 justifie la
définition suivante.

Définition: Soit I' un groupe discret agissant sur une variété de Hadamard pincée
X. On dit que I est localement divergent s’il contient des transformations
paraboliques et s’il existe un sous-groupe parabolique divergent de I' dont
Pexposant critique est maximal parmi les sous-groupes élémentaires de T

Le Théoréme A est maintenant une conséquence directe des Propositions 1 et
2.

Rappelons que le fait que 04,y(Arqq) > 0 entraine I'ergodicité de ’action de I'
sur 0X relativement a o, et que des lors, la mesure o, , ne dépend ni de y, ni
de la suite (sx) qui a permis de la construire [S], [Y]; nous la noterons o, dans
la suite.
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§2. Finitude de la mesure p°

Rappelons le procédé de Sullivan qui permet d’associer & une mesure de
Patterson o, une mesure sur le fibré unitaire tangent T!(X/T) invariante
par le flot géodésique.

Notons 8X XX Pensemble X x X privé de sa diagonale. Fixons une origine
z € X. On peut identifier le fibré unitaire tangent 7% X au produit X X8X xR
en associant & un élément (y,v) € T1X le triplet (£7,&%,7) ot € et €T sont
les extrémités de la géodésique orientée déterminée par (y,v) et 7 = Be+(y, 2).
Dans ces coordonnées, 'action d’une isométrie ¥ de I' est donnée par

(€, €Y, 1) = (v¢ 7€, r + Ber (2,77 '2))

tandis que le flot géodésique (§;):er agit sur T*X par
(&€ m) = (67,6 r - 1)

Pour tout (£7,£%) € 8X x9X , la quantité %(Bg- (x,y) + Be+(z,y)) ne dépend
pas du point y sur la géodésique (£~£T); on la note (£7|€),.

Puisque o est ép-conforme, la mesure e25r(5_|5+)=am(d§‘)am (d£T) est une me-
sure I'-invariante sur X QOX et ne dépend pas de x: c’est le courant géodésique
¢ associé & 0 = (0;). La mesure [i° = ¢° @ dt est invariante sous les actions de
T et du flot géodésique (§;); son support est A[‘)A(AF x R. Elle induit donc par
passage au quotient une mesure p“, invariante sous 'action du flot géodésique
(g¢) sur T*(X/T) et dont le support est (AF>A<A1~ x R)/T.

Lorsque I est cocompact ou convexe cocompact, (AFQAF x R)/T est compact;
u? est alors finie, ¢’est la mesure d’entropie maximale ([S],[K], [Y]). Lorsque I est
géométriquement fini, divergent, et contient des transformations paraboliques, on
peut d’abord se poser la question de la finitude de p” (remarquons que si T est

convergent, o, charge uniquement les points paraboliques et la mesure p7 est
clairement de masse infinie}.

Démonstration du Théoréme B: La projection sur X du support de fi” est con-
tenue dans C(Ar). Le groupe I' étant géométriquement fini, le quotient C(Ar)/T’
se décompose en la réunion disjointe d’un compact Cy et d’une famille finie
C1,...,C; de “bouts cuspidaux”: pour i > 1, chaque C; est isométrique au quo-
tient de P'intersection de C(Ar) et d’une horiboule H¢, par un groupe parabolique
P;. Choisissons un domaine fondamental borélien C; pour l'action de I sur la
préimage de C; dans X. Sans perte de généralité, on peut supposer que Cy est
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relativement compact et que, pour ¢ > 1, C; est un domaine fondamental pour
action de P; sur H¢, N C(Ar).
On a:

l

1 +
7(TH(X/T)) Z Z /a o ¢ (dE~deT) /(E_Hm dt.

=0

Fixons un point z € Cy. Puisque Cy est relativement compact, on a, pour toute
géodésique (6~¢1) rencontrant Cp: 0 < (67]€1)y < D ol D est le diamétre de
Co. Par conséquent, i°(TCp) < 0.(8X)2De¥rP.

Ainsi, la mesure p° est finie si et seulement si i°(T'C;) est fini pour i =
1,...,l. Notons pour simplifier C 'un des domaines fondamentaux C;, P le
groupe parabolique et £ le point parabolique correspondants. Puisque I' est géo-
métriquement fini, on peut choisir un domaine fondamental borélien D, pour
laction de P sur 90X — {&} tel que Dy, N Ar soit relativement compact dans
0X — {£}. Le groupe I étant divergent, on a 0,{€} = 0 et donc

~c(ml — o — 30+ )
i)=Y /,mqupmc (de~de*) /@-mnc‘“

P.9€EP

En utilisant le fait que ¢ est invariante sous l’action de I', on obtient:

Z / ¢ (dn~dnt )/ dt.
Doo Xp~1qDoo (n—n+)np=1C

P,qEP

Puisque C est un domaine fondamental pour ’action de P sur H¢ N C(Ar), on a

donc:
p(TC) = Z/ c"(dn_dn+)/ dt.
pe‘P Doo XpDoo ("7—77+)an

D’un point de vue géométrique, toute géodésique (n~n) qui passe par He se
projette sur M en une géodésique qui fait une incursion dans la région cuspidale
C et le terme |, (=) dt correspond & la longueur de cette incursion. Comme
Do N Ar est relativement compact dans 8X — {£}, il existe un compact K de X
contenant z tel que pour toute géodésique (n~nt) issue de Do, NAr et rencontrant
He, le premier point d’intersection de (np~n%) N H, appartienne & K; une telle
géodésique vérifie donc 0 < (9~ |nt), < diam K. Si de plus n* € pDy N Ar, la
géodésique (n+n~) passe par p(K) et la différence | f(n“n’f)rme dt — d(z,pz)| est
donc majorée par 2diam K. Finalement il existe une constante C > 0 telle que

= Z 92(PPoo)(d(2, pz) — C) < p°(T*C) < C Y 04(pDoo)(d(, pz) + C).

pE'P peEP
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Puisque o, est dp-conforme, 0,(pDy) = fDm e=9rBa(p 2,2) (dn). Comme
Do N Ar est relativement compact dans 8X — {£} il existe € > 0 tel que pour
tout n € D N Ar et pour tous les p € P sauf peut-étre un nombre fini, 'angle
au point z entre les segments géodésiques [z, p~'z] et [z,7) soit supérieur & € ; le

—de(m

terme 0, (pDy) est donc équivalent & e %) yuniformément en p € P. Ceci

termine la démonstration. |

COROLLAIRE 3: Soit I' un groupe géométriquement fini tel que ér > dp pour
tout sous-groupe parabolique P. Alors, la mesure ;° est finie.

Ce résultat est une conséquence directe du Théoréme B.

$3. Groupes paraboliques d’isométries des variétés de Hadamard

Considérons d’abord le cas de 1’espace hyperbolique réel H", identifié au demi-
espace supérieur. Soit p une isométrie parabolique fixant le point co; la transfor-
mation p induit alors sur R"~! = 8H" — {oo} une isométrie euclidienne et, par
un calcul élémentaire, on trouve que la suite (d(0,p"0) — 2logn),>1 converge.
L’exposant critique du groupe (p) est donc 1/2 et le groupe est divergent. Si
maintenant P est un groupe d’isométries paraboliques de H", il contient, d’apres
l'un des théorémes de Bieberbach, un sous-groupe abélien de rang k, d’indice fini
et agissant par translations sur un sous-espace R*. On montre alors que la série
de Poincaré de P est de méme nature que la série 3 1/(n1 +ng + -+ - +ng)?;
I’exposant critique de P est donc k/2 et P est divergent.

Ce résultat se généralise aux espaces symétriques de rang 1 que 'on note ici
KW, avec K = R,C,H ou Q. En effet, soit P un groupe parabolique d’isométries
agissant sur KH"; quitte a extraire un sous-groupe d’indice fini, P peut étre
représenté comme un réseau co-compact d’un groupe linéaire nilpotent simple-
ment connexe N. Si Z(N) désigne le centre de N, posons ! = dim(Z(N)NIm K)
et k = dim(N/Z(N) N Im K); 'exposant critique de P est (2] + k)/2 et P est
divergent [CI].

De fagon générale, lorsque P est un groupe parabolique, abélien de rang k
agissant sur une variété de Hadamard pincée, son exposant critique est supérieur
A ka/2, ol —a? est la borne supérieure de la courbure sur X; néanmoins, le
groupe P peut étre convergent et nous allons en donner des exemples. Nous
établissons tout d’abord un lemme qui nous permettra d’étudier la nature de la
série de Poincaré d’un groupe parabolique.

Soit P un groupe discret d’isométries paraboliques agissant sur X. Notons
& le point fixe de P et choisissons un point de référence o € X. Soit t —
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¢(t) un paramétrage par longueurs d’arcs du rayon géodésique [0,£] ; notons H,
I'horispheére centrée en £ et passant par c(t). Pour tout p € P, on note l,(t) la
distance géodésique, pour la métrique Riemannienne induite sur H;, entre les
points c(t) et p(c(t)); la fonction ¢ — I,(t) est strictement décroissante et tend
vers 0 exponentiellement vite quand ¢ tend vers +oco. Définissons ¢, comme
Iinstant ou I,(tp) = 1 si ,(0) > 1, et par t, = 0 si [,(0) < 1 (ce qui ne peut se
produire que pour un nombre fini de p € P, puisque P est discret). Le lemme
suivant relie la distance d(o, po) a t,.

LEMME 4: Les séries }_ cp e~ s40:P0) ot Y pep € 2% sont de méme nature.

Démonstration: Nous utiliserons le fait que si deux points d’une horisphére #
de X sont & distance horisphérique 1, leur distance pour la métrique ambiante
est supérieure a une constante strictement positive dépendant uniquement de
la borne inférieure sur la courbure de X [HH, Th 4.6]. Désignons maintenant
par P’ Pensemble des éléments p € P tels que ¢(p) > 1. Considérons le chemin
réunion des segments géodésiques [0, c(t,)], [c(tp), p(c(tp))] et [p(c(tp)), p(0)]. Par
la convexité des horisphéres, les angles de ce chemin aux sommets c(t;,) et p(c(tp))
sont supérieurs & 7/2. D’autre part, pour p € P’, lalongueur de ces trois segments
géodésiques est minorée par une constante strictement positive indépendante de
p. Le théoréme de comparaison de Topogonov entraine alors que la quantité
|d(0, p(0)) — 2t,| est bornée indépendamment de p. Le lemme en résulte puisque
P — P’ est fini. ]

Nous allons maintenant construire une variété de Hadamard pincée Y de di-
mension r, sur laquelle tout groupe de Bieberbach de rang r — 1 agit comme
groupe parabolique convergent. Pour cela, posons Y = R"™! x R et munissons Y
d’une métrique Riemannienne de la forme g = T2(t)dz2,, + dt?, ou dz?,, est une
métrique euclidienne fixée sur R"~!, et T une fonction C* strictement positive.
Le groupe des isométries de g contient les isométries euclidiennes de R™~! et en
particulier tous les groupes de Bieberbach de rang »—1. La courbure sectionnelle
au point (z,t) est indépendante de z: dans un plan contenant le vecteur §/0t,
elle vaut K (t) = —T"(t)/T(t) et dans un plan horizontal, elle vaut —K?(t). Pour
que Y soit une variété de Hadamard pincée, il suffit que K soit bornée entre
deux constantes strictement négatives. Remarquons que pour T'(log s} = 1/s on
obtient un modele de 1’espace hyperbolique H".

Supposons que T vérifie, pour s assez grand, T'(log s+2loglog s) = 1/s. Alors,
en posant u(s) = log s + 2loglog s, la relation T(u(s)) = 1/s entraine:

Kuto) = i) = S
u(s)) s3(w'(s))
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On en déduit que lim,_, o, K(u(s)) = —1. En fait K(s) tend vers —1 et toutes
ses dérivées vers 0 lorsque s — +o00.

Considérons une translation p sur R"~! x {0} de distance euclidienne de trans-
lation 1. Les droites euclidiennes étant des géodésiques pour la métrique in-
duite sur les horispheres, on a: tpn = T~1(1/|n|). Donc, pour |n| assez grand,
tpn = logIn| + 2loglog |n|. Ainsile groupe cyclique engendré par p a 1/2 comme
exposant critique et est convergent. Plus généralement, si P est un groupe de
Bieberbach contenant un sous-groupe abélien d’indice fini de rang k, le groupe
P est convergent d’exposant k/2.

Soulignons que le choix précédent de T ne prescrit la courbure que sur un
voisinage R"~! x [3, +o0o[. On peut en particulier imposer & la courbure de Y
d’étre constante égale & —1 dans R"~1x] — 00, o], pour tout « fixé & ’avance. 1l
suffit de choisir T tel que T'(logs) = 1/s pour 0 < s < e et T'(log s+2loglog s) =
1/s pour s > § ol J est un réel positif suffisamment grand; on choisit 3 tel que
T'(a) < T'(B), afin que Vinterpolation entre les restrictions imposées sur | — oo, @]
et B, +oo[ puisse étre réalisée par une fonction convexe aussi réguliere qu’on le
souhaite.

§4. Construction de groupes géométriquement finis non-élémentaires
convergents

Soit I' un groupe discret de covolume fini mais non cocompact agissant sur H".
Chaque bout A de H" /T est isométrique au quotient d’une horiboule de H" par un
groupe de Bieberbach 71 (V) de rang r—1. Ce groupe agit aussi isométriquement
sur R™! x R muni de la métrique g du §3 ; pour cette métrique g le groupe
71 (N) est convergent. On peut alors recoller le quotient (R™! x [8,+o0[)/T
avec H" /T' — NV; on obtient une variété de Hadamard pincée Y sur laquelle T agit
isométriquement.

Démonstration du Théoréme C: Fixons un point o sur 'axe de h. Quitte a
remplacer h et p par des puissances, on peut trouver des compacts U, et Uy,
voisinages respectifs dans Y U JY du point fixe de p et des points fixes de h, tels
que:

(1) Up Uy, =D et o ¢ (U, Uln);

(2) R*¥(8X —Ur) C Uy, p*(8X ~U,) C U, pour tout k € Z*;

(3) Uy et Up, sont vus depuis o sous un angle minoré par une constante stricte-

ment positive.

Le groupe I" engendré par p et h est un groupe libre; tout élément v € I" différent
de Id sécrit de fagon unique comme un produit wi* - --wp*, avec w; € {p,h},
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w; # wit1, n; € Z* et on a: (X UOX — (UpUUp)) C Uy, D’apres (3), si x € Uy,
et y € Up, le chemin égal & la réunion des segments géodésiques [z, o] et [0, ] est
une quasi-géodésique. Il existe donc une constante C > 0, indépendante de z et
de y, telle que d(x,y) > d(o,z) + d(0,y) — C. Par conséquent, la propriété (2)
entraine

) d(o,hmp™ - h™p™0) > " d(o,h™0)+ Y d(o,p™0) — 2kC.

1<i<k 1<i<k

Puisque I'exposant critique du groupe cyclique < h > est nul, la série de Poincaré
Pr(o0,0,0(y)) est de méme nature que la série

=Z Z e_sd(oyh"lpmm..h"kp"'kg)

k>1n;m;cZ*

en s = 6. D’apres (4),

PF( Z 2sC Z e—-sd(o h"™o0) Z e—sd(o,p o)

k>1 nez* mez*
que 'on majore par

—sl(h)
2(26250 € — Z e—sd(o,P o))k

k>1 mez
Quitte a remplacer h par une puissance A™, on peut supposer que

8(p)i(h)
2626(")0_1_6-;5(_)1(_}.)_ Z e dmdep™o) 1.
P

L’exposant critique de I" est donc inférieur & 6, et on a Pr(0,0,0(,) < +oo.
Comme (p) C T, on a aussi d,) < dr. Finalement, I' est convergent d’exposant
O(p)-

Pour montrer que I' est géométriquement fini, il nous faut d’abord montrer
que tout point £ € Ar qui n’est fixé par aucune transformation parabolique
est radial. Pour cela, nous utilisons une définition des points radiaux due a
B. Bowditch ([B, Prop. 5-2-1]), équivalente & celle donnée dans le §1: le point
¢ est radial si et seulement s’il existe une suite (yx) de T' telle que pour tout
point n € Ar — {£} la suite ((vx(n),1£(§))) reste dans un compact de A[‘?(AI“.
Lorsque £ est le point fixe attractif d’une isométrie hyperbolique v € T, il suffit
de poser 75 = v~ pour tout k > 1. Sinon, il existe une unique suite (Wi)ix1
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avec w; € {p,h},n; € Z* et wiy1 # w; telle que § = limg_y o0 WP -+~ wp* (o)
; on pose alors v, = w, ™* ---w; ™. Par la propriété de ping-pong, d’une part
Y€ € Us,,, et d’autre part, pour tout n € Ar — {£}, vxn appartient & U,, pour
k assez grand. La condition wy # wg41 et le fait que les ensembles Uy, et U,
soient disjoints permettent de conclure.

Montrons enfin que les points paraboliques de Ar sont bornés. Ceci résulte en-
core de la dynamique de ping-pong : les sous-groupes paraboliques maximaux de
I" sont en effet tous conjugués au groupe cyclique engendré par p et les translatés
par p des compacts Ar N Uy sont disjoints et recouvrent Ar — {¢}. |

Remarque: De méme, on peut obtenir un groupe géométriquement fini vérifiant
la propriété de trou critique sans étre localement divergent. Dans la construction
précédente, il suffit de remplacer le groupe hyperbolique < h > par un groupe
purement loxodromique, non élémentaire et d’exposant strictement supérieur a
1/2.

Références

[B] B. H. Bowditch, Geometrical finiteness with variable négative curvature, Duke
Mathematical Journal 77 (1995), 229-274.

cr K. Corlette and A. Iozzi, Limit sets of isometry groups of exotic hyperbolic
spaces, Transactions of the American Mathematical Society 351 (1999), 1507-
1530.

[Co] M. Coornaert, Mesures de Patterson-Sullivan sur le bord d’un espace hyper-
bolique au sens de Gromov, Pacific Journal of Mathematics 159 (1993), 241-
270.

[DP] F. Dal’bo and M. Peigné, Some negatively curved manifolds with cusps, mixing
and counting, Journal fiir die Reine und Angewandte Mathematik 497 (1998),
141-169.

[HH] E. Heinze and H. C. Im Hof, Geometry of horospheres, Journal of Differential
Geometry 12 (1977), 481-491.

K] V. Kaimanovitch, Ergodicity of harmonic invariant measures for the geodesic
flow on hyperbolic spaces, Journal fiir die Reine und Angewandte Mathematik
455 (1994), 57-103.

[P] S. J. Patterson, The limit set of a Fuchsian group, Acta Mathematica 136
(1976), 241-273.
(9] D. Sullivan, Entropy, Hausdorff measures old and new and limit set of

geometrically finite Kleinian groups, Acta Mathematica 153 (1984), 259-277.



124 F. DAL'BO, J.-P. OTAL ET M. PEIGNE Isr. J. Math.

[Y] C. Yue, The ergodic theory of discrete groups on manifolds of variable negative
curvature, Transactions of the American Mathematical Society 348 (1996),
4965-5006.



